Carbon-Carbon Bond Formation at the y-Position of Dienolates *via* **the Palladium Catalysed Coupling of the Tin Masked Dienolates**

Yoshinori Yamamoto," Satoshi Hatsuya, and Jun-ichi Yamada

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

The palladium catalysed coupling reaction of the tin masked dienolate **(2)** with organic halides takes place at the position substituted by tin, thereby providing a new method for C-C bond formation at the y-position of dienolates.

Carbon-carbon bond formation at the y-position of dienolates has long been a problem in organic chemistry. It is generally accepted that dienolates **(1)** undergo selective alkylation at the α -position rather than the γ -position. Since carbon-carbon bond formation at the y-position is important for the synthesis of terpenoid natural products, especially isoprenoid alkenes, a number of methods have been developed to produce y-regioselectivity. **1** We report that the palladium catalysed coupling reaction of the tin masked dienolate **(2)** with acyl, aryl, and vinyl halides takes place at the position directly bonded to tin (Scheme 1), though coupling of γ -substituted allylic tin compounds, *e.g.* crotyltin, normally proceeds through allylic transposition to give the branched isomer *(5)* as the major product (Scheme 2).²

We recently reported that the tin masked dienolates **(2)** are easily obtainable from the corresponding dienolate **(1)** *.3* The results of the palladium catalysed coupling reactions of **(2a)** are summarized in Table 1. The couplings of **(2b)** or more highly chlorine substituted derivatives $(R¹₃ = Cl₃$ or BuCl₂) were unsuccessful, presumably owing to formation of the Lewis acid $Bu_x SnCl_{4-x}$ ($x = 0, 1, 2$). The coupling took place at the carbon directly bonded to tin and the allylic transposition2 product was not detected. Aryl halides (Table 1, entries $1-4$), acid halides (entries $5-7$), and vinyl bromide (entry 8) produced **(4);** the aromatic acid halide and aryl halides substituted with an electron withdrawing group gave

Table 1. y-Regioselective coupling of **(2a)** with **(3).a**

Entry	Halide (3)	Procedureb	Isomer ratio ^c E:Z	Isolated total yield of $(4)/\%$
	PhBr	А	1:4	55 ^d
2	$MeCOC_6H_4Br-p$	А	1:3	60
3	$MeOC6H4Br-p$	в	1:1.5	30
4	α -Naphthyl bromide	в	1:10	50
	PhCOCI		1:8	70c
6	$Me(CH_2)_6 COCl$		1:5	25
	$Me(CH_2)$ ₃ CEtHCOCl		1:2	25
8	$Me2C=CHBr$		1:3	20

a All reactions were carried out on 1 mmol scale under N_2 . Products were isolated by column chromatography (silica gel). $\,^{\circ}$ A: 5% Pd(PPh₃)₄, benzene, reflux, 21 h; B: 5% Pd(OAc)₂, 20% PPh₃, toluene (entry 3) or benzene (entry 4), reflux, $17-20$ h; C: $1-1.5\%$ PhCH₂PdCl(Ph₃P)₂, CHCl₃, reflux 20-24 h. c Isomer ratio was determined by $1\overrightarrow{H}$ n.m.r. analysis. **d** As a by-product, the β .yunsaturated ester derivatives of **(4)** were obtained in 5% yield. *e* The isomerized β , γ -unsaturated ester was obtained in 20% yield.

good yields. In some cases, the β , y-unsaturated ester derivatives **(7)** were produced as by-products. The coupling of aliphatic acid halides and vinyl halide produced low yields.

Scheme 3

The coupling of allylic tin reagents without allylic transposition has been reported previously.4 It should be noted that there is a remarkable contrast between the very high extent of aldehydes at the α -position of $(2a)$ in the presence of BF_3 . OEt_2^2 and the exclusively γ reaction of halides with (2a) in the presence of the palladium containing catalysts. Although it may be premature to speculate on the mechanism of the present regioselective carbon-carbon bond formation, we propose a π -allyl mechanism (Scheme 3) instead of the direct attack mechanism2b.c of allylic tins. Transmetallation of the initially formed Pd^{II} species presumably gives the intermediate **(8)**, which undergoes reductive elimination to produce **(4)** and Pd^0 species. The π -allyl mechanism is supported by the $E: Z$ ratio of **(4)** (see Table 1); if the σ -allyl species **(8a)** is the only intermediate involved, the ratio should be the same as those of the starting material $(2a)$ $(E:Z 1:7)$. Experimental results indicate that the ratio is independent of the geometry of **(2a),** suggesting intermediacy of **(Sb).** Irrespective of the precise mechanism, the dienolate masked by tin seems to be useful for chain elongation at the y-position.

Received, 28th August 1987; Corn. I277

References

- 1 For example, **P.** Albaugh-Robertson and J. **A.** Katzenellenbogen, J. *Org. Chem.,* 1983,48,5288; M. Majewski, G. B. Mpango, M. T. Thomas, **A.** Wu, and V. Snieckus, *ibid.,* 1981, **46,** 2029, and references cited therein; **A. S.** Kende and J. Chen, J. *Am. Chem. SOC.,* 1985, **107,** 7184.
- 2 (a) **J.** W. Labadie, D. Tueting, and **J.** K. Stille, J. *Org. Chem.,* 1983,48,4634; (b) J. Godschalx and J. K. Stille, *Tetrahedron Lett.,* 1980,21,2599; (c) B. M. Trost and E. Keinan, *ibid.,* 1980,21,2595.
- 3 **Y.** Yamamoto, **S.** Hatsuya, and J. Yamada, J. *Chem. SOC., Chem. Commun.,* 1987, 561.
- 4 M. Kosugi, **Y.** Shimizu, andT. Migita, *J. Organomet. Chem.,* 1977, **129,** *C36;* J. **H.** Merrifield, J. P. Godschalx, and J. K. Stille, *Organometallics,* 1984, **3,** 1108; **A.** Goliaszewski and J. Schwartz, *ibid.,* 1985, **4,** 417.